
 

2023 Asian Conference on Remote Sensing (ACRS2023) 

SPATIOTEMPORAL ANALYSIS OF SATELLITE-BASED TRACE 

GASES CONCENTRATIONS IN PORT OF MANILA, 

PHILIPPINES  
 

Laurelly Joyce Aporto*1, Marie Antoinette Latunio1, Roseanne Ramos1, and Ayin Tamondong1  
1Department of Geodetic Engineering, University of the Philippines Diliman 

Email: laaporto1@up.edu.ph, mlatunio@up.edu.ph, rvramos@up.edu.ph, amtamondong@up.edu.ph 

 

 

KEY WORDS: Air Quality, Port of Manila, Sentinel-5P Remote Sensing, Emerging Hotspot Analysis 

 

ABSTRACT: The Port of Manila, located in the most highly urbanized city in the Philippines, is a major source of air 

pollutants. There is no ground monitoring station near this port, hence the lack of a reliable tool to assess whether air 

pollutant concentrations in its vicinity are within the safe levels. This study investigates the spatiotemporal variability of 

air pollutants, specifically nitrogen dioxide (NO2) and sulfur dioxide (SO2), in the Port of Manila, Philippines using 

remotely sensed Sentinel-5P TROPOMI observations. Tropospheric vertical column densities (VCDs) of SO2 and NO2 

were analyzed using Emerging Hotspot Analysis (EHSA) in ArcGIS. Analytical parameters include the spatial neighbors 

set to 8, the neighborhood time step set to 1, and the global window set to Individual time step – set to ensure enough 

spatial context and temporal information for the analysis. The findings from the analysis revealed several patterns and 

trends within a 10-km vicinity of the study area. The analysis indicated a significant relationship between port activities 

and the occurrence of hotspots, particularly intensifying and persistent hotspots from 2019 to 2023. A decrease in hotspots 

is observed in 2020, which coincides with the period of community quarantines imposed in Metro Manila, Philippines 

during the COVID-19 pandemic. However, the analysis of SO2 concentrations reveals no significant spatiotemporal 

patterns. This research provides insights into the spatiotemporal variability of air pollutants in the Port of Manila and 

results may be used by local authorities in developing a port monitoring system appropriate for the city. 

 

 

1. INTRODUCTION 

Air pollution is the largest known environmental health risk, causing around 7 million deaths every year globally 

(World Health Organization, 2016). In the Philippines, urban areas are continuously facing worsening air quality 

conditions. As much as 25% of the Filipino population is exposed to yearly average particulate matter concentrations that 

are at least five times higher than the WHO guidelines. In the first quarter of 2021, six air quality monitoring stations 

around Metro Manila that detect particulate matter pollutants reported 93 µg/Ncm (De Vera-Ruiz, 2021). 

 

Air quality is of significant concern in areas where industrialization and urbanization are well-developed. In particular, 

port and coastal areas are common hotspots of air pollutants. The harmful emissions of ships used in international trades 

release massive amounts of pollutants into the air (Sinay, 2021). It is estimated that the shipping industry emits around 

940 million tons of carbon dioxide every year, making up 2.5% of the total global carbon dioxide emissions (UK Research 

and Innovation, 2021). 

 

Anthropogenic and natural sources of air pollution cause regular fluctuations in ambient air quality; hence, air quality 

monitoring technologies are continuously being developed to gain a more holistic understanding of air pollution. Today's 

air quality monitoring systems range from conventional reference-grade FRM/FEM monitors to mobile air quality sensors, 

stationary low-cost air quality sensors, satellite remote sensing monitoring technology, and alternative monitoring 

methods (Clarity, 2021). One of these alternative non-conventional methods to monitor air quality is the use of remote 

sensing to monitor air pollutant concentrations over large study areas. 

 

Satellite remote sensing is one of the most recent advances in air quality monitoring technology because of its capability 

to cover a broad region in a single image and due to its temporal resolution. The multi-platform system and new algorithm 

in the processing chain for satellite remote sensing allow for faster and more accurate emission inventories over a given 

area. The Copernicus Sentinel-5 Precursor Tropospheric Monitoring Instrument (S5p/TROPOMI), created by the 

European Space Agency (ESA), currently provides the most significant real-time observations of air quality (Dutta, 2021). 

 

In particular, the Philippines has a significant problem in its air quality monitoring systems and access to air pollution 

data. A recent environmental report revealed that inadequacies in access to data on air pollution and quality are increasing 

the risk of air pollution for vulnerable people in the Philippines (Chen et al., 2022). Only 45% of residents in the 

Philippines, for instance, reside within 25 kilometers of an air quality monitoring station, the majority of which are 
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situated in Metro Manila. Stationary air quality monitoring stations in the country are also rarely updated regularly, 

making the data acquired insufficient and outdated (DENR-EMB, 2021). 

 

With the alarming pollutant concentrations in the country, the need to develop proper air quality monitoring systems 

and technologies in the Philippines is crucial as air pollution monitoring works to protect the safety of the public from 

highly polluting facilities and corporations. Commonly, ground station equipment is utilized to monitor air quality in the 

Philippines; however, these instruments are big, expensive, heavy, and location dependent. Thus, the study proposes the 

utilization of remote sensing techniques and satellite image processing  to analyze the spatiotemporal variations of air 

pollutant (nitrogen dioxide [NO2] and sulfur dioxide [SO2]) concentrations over a selected port area in the Philippines. 

 

The primary objective of this study is to analyze the spatiotemporal variations of air pollutant concentrations over the 

highly industrialized Port of Manila, Philippines. Specifically, this study aims to utilize Sentinel-5P TROPOMI data in 

assessing Nitrogen Dioxide (NO2) and Sulfur Dioxide (SO2) concentrations over the Port of Manila Philippines. Moreover, 

the study aims to analyze the spatial and temporal trends and variations in air pollutant concentrations. 

 

 

2. METHODOLOGY 

2.1 Data Collection 

Spatial data of nitrogen dioxide (NO2) and sulfur dioxide (SO2) were accessed from the Sentinel-5P TROPOMI 

instrument via the Google Earth Engine platform. These Level 3 products provided the tropospheric vertical column 

densities of the pollutants. The Google Earth Engine facilitated the acquisition of these datasets, which were provided at 

a spatial resolution of approximately 1x1° (equivalent to approximately 1.111 km). Monthly average data for NO2 and 

SO2 were extracted from the available datasets, covering the time period from July 2018 to March 2023 for NO2 and 

December 2018 to March 2023 for SO2. 

 

2.2 Data Processing 

2.2.1 Generation of Buffer Zone 

 

Based on global annual approximations, approximately 70% of worldwide ship emissions occur within a 400 km 

distance from coastlines (Sorte et. al., 2020), thus requiring the analysis on the immediate vicinity of port areas. The value 

of 10 km was selected as the buffer radius. 

 

  
Figure 1. Study area (left) and 10KM buffer zone, outlined in yellow 

 

2.2.2 Space Time Cube Creation 

 

To assess the spatial and temporal trends of air pollutant concentrations, a space-time cube was created for the years 

2019-2022 for both NO2 and SO2 datasets. The Create Space Time Cube tool in ArcGIS requires a minimum of then (10) 

time slices in order to structure the data into 10 time-step intervals. Thus, study periods with less than ten (10) monthly 

raster data, specifically 2018 and 2023, were not included in the space-time cube creation. With ArcGis Pro, space-time 

statistics and visualizations can be applied to raster data using the Space Time Pattern Mining toolbox. The methods and 

parameters for the creation of the space time cube, adapted from Buie (2022), is shown in  Figure 2. The outputs include 

netCDF space-time cubes for each pollutant for each year from 2019 to 2022. 

 

 
Figure 2. Space Time Cube creation in ArcGIS Pro 3.0 (Buie, 2022). 
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2.3 Emerging Hot Spot Analysis 

2.3.1 Calculations 

 

The spatiotemporal analysis of air pollutants was performed using the Emerging Hot Spot Analysis tool in ArcGIS Pro. 

Emerging Hot Spot Analysis (EHSA) is a technique categorized within the domain of exploratory spatial data analysis 

(ESDA) that combines two established methodologies. It integrates the conventional approach of hot spot analysis, 

employing the Getis-Ord Gi* statistic, with the classical time-series Mann-Kendall test for monotonic trends. The primary 

objective of EHSA is to assess the temporal dynamics of hot and cold spots. It facilitates the exploration of questions 

such as whether these spots are experiencing increasing intensity, undergoing cooling trends, or exhibiting stability over 

time (Parry, n.d.). 

 

To accomplish this, EHSA calculates the Gi* statistic for each time period. The resulting series of Gi* values at each 

location is considered as a time-series dataset and subjected to the Mann-Kendall statistic to detect trends. The Getis-Ord 

Gi* statistic, as proposed by Ord and Getis (1995), was employed to identify the extent and intensity of spatial clustering.  

 

The distribution of the Gi* statistic tends to follow a normal distribution when normality is observed in the variable. 

However, if the underlying distribution is non-normal, the test statistic also deviates from normality. In such scenarios, 

increasing the number of spatial units analyzed within the clusters can aid in approaching normality for the distribution 

of the Gi* statistic (Songchitruksa and Zeng, 2015). Under the assumption of normality, the Gi* statistic is typically 

standardized using its sample mean 𝑋 and variance 𝑆2: 
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where 𝑥𝑗 is the attribute value for feature 𝑗, 𝑤𝑖,𝑗 is the spatial weight between feature 𝑖 and 𝑗, 𝑛 is equal to the total 

number of features and: 
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The standardized Gi* is essentially a Z-score, allowing for its association with statistical significance. A Gi* value close 

to zero indicates a random distribution of the observed spatial events. Conversely, positive and negative Gi* statistics 

with high absolute values signify the presence of clusters with high- and low-valued events, respectively. Specifically, a 

negative Gi* suggests a tendency towards clusters of events characterized by short incident durations. In summary, if the 

calculated index values exceed a threshold associated with statistical significance, the location of a cluster is identified as 

a hotspot (Songchitruksa and Zeng, 2015). 

 

Secondly, EHSA employs the Mann-Kendall trend test, initially introduced by Mann in 1945 and further developed by 

Kendall in 1975, to evaluate temporal trends observed throughout the time series data. The objective of the Mann-Kendall 

(MK) test (Mann, 1945; Kendall, 1975) is to conduct a statistical assessment of whether there exists a monotonic upward 

or downward trend in the variable of interest over time. A monotonic upward (or downward) trend implies a consistent 

increase (or decrease) of the variable throughout the time period, without necessarily adhering to a linear pattern.  

 

The Mann-Kendall Trend test is a nonparametric test; meaning it does not rely on any specific distribution assumptions 

and is not influenced by outliers, making it advantageous for analyzing data variables that exhibit increasing or decreasing 

trends over time. However, the MK test is based on several underlying assumptions on the data to be analyzed. Firstly, in 

the absence of a trend, the measurements obtained over time should be independent and identically distributed. 

Independence implies that the observations are not correlated sequentially. Secondly, the observations collected over time 

should accurately represent the true conditions during the sampling periods. The methods employed for sample collection, 

handling, and measurement should yield unbiased and representative observations of the underlying populations across 
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time. There is no strict requirement for the measurements to follow a normal distribution, nor is it necessary for the trend, 

if present, to be linear. 

 

The MK test can accommodate missing values and values below the limits of detection (LD), but the presence of such 

occurrences can negatively impact the test's performance. Additionally, the assumption of independence necessitates that 

the time intervals between samples be sufficiently large to prevent correlation between measurements taken at different 

time points (Matzke et. al., 2014). 

  

With a time series dataset comprising 𝑛 observations of the variable of interest and for each  pair of observations (𝑥𝑗, 𝑥𝑘) 

where 𝑗 < 𝑘, let 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) be an indicator function that takes on the values +1 for positive differences, -1 for negative 

differences, and 0 for tied differences. The MK test statistic is then calculated using the formula expressed in Equation 4. 
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where 𝑔 is the number of tied groups and 𝑡𝑝 is the number of observations in the 𝑝th group. A positive value of 𝑍𝑀𝐾 

suggests that the data exhibit a tendency to increase over time, while a negative value indicates a tendency towards 

decreasing values as time progresses. 

 

2.3.2 Parameters 

 

The Emerging Hot Spot Analysis tool involves setting the following parameters: conceptualization of spatial 

relationships, number of spatial neighbors, neighborhood time step, and global window. K nearest neighbor was used to 

conceptualize spatial relationships. The K-nearest neighbors (KNN) approach is particularly effective when ensuring a 

minimum number of neighbors for analysis becomes crucial. The KNN approach takes into account neighboring data 

points, regardless of their spatial distances, and incorporates their influence in the analysis. This enables the KNN 

approach to capture localized patterns and dependencies (ESRI, n.d.). Given that air quality data often exhibit spatial 

autocorrelation, meaning that neighboring locations tend to have similar values, the KNN method is suitable for this study. 

 

The number of spatial neighbors was set to 8, the neighborhood time step was set to 1, and the global window was set 

to Individual time step. The Number of spatial neighbors and Neighborhood Time Step parameters determine the extent 

of each bin's neighborhood, which serves as the context for its analysis. KNN evaluates each pixel by evaluating the K 

number of neighbors (ESRI, n.d.). Given that the resolution of S5P datasets are approximately 1km x 1km, the hotspot 

analysis considers a neighborhood of 3km x 3km in the spatial clustering, as shown in Figure 3.  

 

 
Figure 3. Spatial neighborhood for KNN analysis used in the study. 

  

Furthermore, the temporal neighbors were considered using the time step parameter. Temporal neighbors are backward 

in time only and a neighborhood time step of 1 includes two time-step intervals — in the case of this study, two-month 

intervals. The global window, or what each bin is compared against to indicate statistical significance, was set to be the 
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same as the neighborhood time step which is 1 or individual in order to examine how NO2 and SO2 concentrations are 

changing over time within the same spatial neighbors. 

  

The selection of parameters in this study was centered around achieving a minimum number of neighbors and a 

minimum number of time steps in order to ensure sufficient spatial context and temporal information for the 

spatiotemporal analysis of air quality data. 

 

2.3.3 EHSA Patterns 

 

The outcomes obtained from the Getis Ord Gi* and Mann-Kendall statistics, pertaining to cluster and trend analyses, 

are subsequently employed to classify each bin. The Emerging Hot Spot Analysis tool assigns each bin to one of seventeen 

unique categories, encompassing a diverse range of scenarios. Each category represents a distinct configuration of 

spatiotemporal significance, allowing for a comprehensive characterization of the analyzed data (ESRI, 2014). 

 

Table 1.  Emerging Hotspot Analysis patterns in ArcGIS Pro 3.0 (ESRI, 2014). 

Pattern 

Name 

Definition 

No Pattern 

Detected 

Does not fall into any of the hot or cold spot patterns defined below. 

New Hot 

Spot 

A location that is a statistically significant hot spot for the final time step and has never been a 

statistically significant hot spot before. 

Consecutive 

Hot Spot 

A location with a single uninterrupted run of at least two statistically significant hot spot bins in the 

final time-step intervals. The location has never been a statistically significant hot spot prior to the final 

hot spot run and less than 90 percent of all bins are statistically significant hot spots. 

Intensifying 

Hot Spot 

A location that has been a statistically significant hot spot for 90 percent of the time-step intervals, 

including the final time step. In addition, the intensity of clustering of high counts in each time step is 

increasing overall and that increase is statistically significant. 

Persistent 

Hot Spot 

A location that has been a statistically significant hot spot for 90 percent of the time-step intervals with 

no discernible trend in the intensity of clustering over time. 

Diminishing 

Hot Spot 

A location that has been a statistically significant hot spot for 90 percent of the time-step intervals, 

including the final time step. In addition, the intensity of clustering in each time step is decreasing 

overall and that decrease is statistically significant. 

Sporadic 

Hot Spot 

A statistically significant hot spot for the final time-step interval with a history of also being an on-

again and off-again hot spot. Less than 90 percent of the time-step intervals have been statistically 

significant hot spots and none of the time-step intervals have been statistically significant cold spots. 

Oscillating 

Hot Spot 

A statistically significant hot spot for the final time-step interval that has a history of also being a 

statistically significant cold spot during a prior time step. Less than 90 percent of the time-step intervals 

have been statistically significant hot spots. 

Historical 

Hot Spot 

The most recent time period is not hot, but at least 90 percent of the time-step intervals have been 

statistically significant hot spots. 

New Cold 

Spot 

A location that is a statistically significant cold spot for the final time step and has never been a 

statistically significant cold spot before. 

Consecutive 

Cold Spot 

A location with a single uninterrupted run of at least two statistically significant cold spot bins in the 

final time-step intervals. The location has never been a statistically significant cold spot prior to the 

final cold spot run and less than 90 percent of all bins are statistically significant cold spots. 

Intensifying 

Cold Spot 

A location that has been a statistically significant cold spot for 90 percent of the time-step intervals, 

including the final time step. In addition, the intensity of clustering of low counts in each time step is 

increasing overall and that increase is statistically significant. 

Persistent 

Cold Spot 

A location that has been a statistically significant cold spot for 90 percent of the time-step intervals 

with no discernible trend in the intensity of clustering of counts over time. 

Diminishing 

Cold Spot 

A location that has been a statistically significant cold spot for 90 percent of the time-step intervals, 

including the final time step. In addition, the intensity of clustering of low counts in each time step is 

decreasing overall and that decrease is statistically significant. 

Sporadic 

Cold Spot 

A statistically significant cold spot for the final time-step interval with a history of also being an on-

again and off-again cold spot. Less than 90 percent of the time-step intervals have been statistically 

significant cold spots and none of the time-step intervals have been statistically significant hot spots. 

Oscillating 

Cold Spot 

A statistically significant cold spot for the final time-step interval that has a history of also being a 

statistically significant hot spot during a prior time step. Less than 90 percent of the time-step intervals 

have been statistically significant cold spots. 
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Historical 

Cold Spot 

The most recent time period is not cold, but at least 90 percent of the time-step intervals have been 

statistically significant cold spots. 

 

2.4 Temporal Analysis 

In order to analyze the time periods with the most significant amounts of air pollutant concentrations within the study 

sites, box plots of NO2 and SO2 concentrations were utilized to analyze the temporal trends of various pollutant parameters 

by plotting the average vertical column density in monthly intervals. These plots provide a comprehensive summary of 

the dataset's distribution, including the minimum and maximum values, upper and lower quartiles, and the median. This 

approach allows for a detailed assessment of the temporal variations in air quality parameters. 

 

3. RESULTS AND DISCUSSION 

3.1 Emerging Hot Spot Analysis of NO2 Concentrations 

 
Figure 4.  Emerging hotspot analysis of NO2 concentrations in Port of Manila from 2019-2022 

 

Emerging hotspot analysis of NO2 tropospheric VCDs in the vicinity of Port of Manila highlights the regular occurrence 

of persistent and intensifying hotspots, coinciding with the high amount of activities in the port. Notably, the intensifying 

hotspots are clustered around land areas in Metro Manila while persistent hotspots are clustered around the port and 

coastal areas. Table 2 shows the percentages of the emerging hotspot analysis patterns of NO2 in Port of Manila from 

2019 to 2022 and their possible context and sources. 

 

Table 2.  Summary table of EHSA patterns of NO2 concentrations in Port of Manila and their possible sources 

Year Pattern Percentage (%) Possible Source 

2019 

Persistent Hot Spot 79.24743 A 4.5 percent increase in container input of 5,315,500 

twenty-foot equivalent units (TEUs) compared to the 

previous year of 2018 (Lloyd’s List, 2021). 
Intensifying Hot Spot 20.75257 

2020 

Intensifying Hot Spot 66.47662 
A decrease of port activities and other related businesses due 

to the March 2020 COVID-19 community quarantine 

(Cigaral, 2020). It was reported later that year that the Port of 

Manila resumed normal operations after experiencing cargo 

congestion during the Luzon-wide lockdown (CNN, 2020). 
Persistent Hot Spot 33.52338 

2021 Intensifying Hot Spot 100 

The Philippine Ports Authority reported in March of 2021 

that cargo traffic in the Philippines is expected to rebound by 

7% in 2021 after a 13.5% drop in 2020 due to pandemic-

related restrictions. The decline was mainly observed in the 
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ports of Manila, which handle 85% of the country's total 

cargo volume (Dela Cruz, 2021) 

2022 

Persistent Hot Spot 98.28962 
The Philippine Ports Authority reported in 2022 that 

passenger volume in the Port of Manila more than doubled in 

the first half of the year, reflecting the easing of COVID-19 

restrictions (Rosales, 2022). 
Diminishing Hot Spot 1.71038 

 
 

3.2 Emerging Hot Spot Analysis of SO2 Concentrations 

 

 
Figure 5.  Emerging hotspot analysis of SO2 concentrations in Port of Manila from 2019-2022 

 

Emerging hotspot analysis on SO2 tropospheric VCDs in the Port of Manila vicinity show that the overall most prevalent 

patterns are no pattern, oscillating hotspots, and oscillating coldspots. The 2019 emerging hotspot analysis resulted in an 

almost equivalent percentage of oscillating hotspots and no pattern detected while the 2020, 2021, and 2022 emerging 

hotspot analyses resulted in a majority of no pattern detected. The primary contributors of SO2 in the Philippines are 

volcanic emissions (Canlas et. al., 2022). Despite this, it is worth noting that emerging hotspot analysis did not show any 

significant spatiotemporal patterns in SO2 concentrations. Table 3 shows the percentages of the emerging hotspot analysis 

patterns of SO2 in Port of Manila from 2019 to 2022 and their possible context and sources. 

 

Table 3.  Summary table of EHSA patterns of SO2 concentrations in Port of Manila and their possible sources 

Year Pattern Percentage (%) Possible Source 

2019 

Oscillating Hot Spot 45.49601 

The fluctuations in SO2 levels as demonstrated by the 

prevalence of oscillating hotspots and cold spots can be 

attributed to the activity of the nearby Taal Volcano, which 

was declared Alert Level 1 on November 2019, Alert Level 4 

then Alert Level 3 on January 2020, Alert Level 2 on March 

2021, and Alert Level 3 on March 2022 (De Vera-Ruiz, 2019; 

De Vera-Ruiz, 2020; Arceo, 2021; ABS-CBN News, 2022). 

No Pattern Detected 40.59293 

New Hot Spot 7.18358 

Oscillating Cold Spot 3.87685 

Sporadic Hot Spot 1.93843 

Sporadic Cold Spot 0.91220 

2020 

No Pattern Detected 51.53934 

Oscillating Hot Spot 35.23375 

Oscillating Cold Spot 9.69213 

New Hot Spot 2.16648 

Sporadic Cold Spot 0.57013 

Sporadic Hot Spot 0.34208 

Consecutive Hot Spot 0.22805 

New Cold Spot 0.22805 

2021 No Pattern Detected 48.57469 
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Oscillating Hot Spot 32.95325 

Oscillating Cold Spot 16.41961 

Sporadic Hot Spot 2.05245 

2022 

No Pattern Detected 41.61916 

Oscillating Hot Spot 27.13797 

Sporadic Hot Spot 13.34094 

Oscillating Cold Spot 11.63056 

New Cold Spot 6.15735 

Diminishing Hot Spot 0.11403 

 

3.3 Temporal Analysis 

Table 4. Summary table of annual mean NO2 concentrations in the study area 

Year Annual Mean NO2 Concentrations 

within 10KM buffer zone  (10-6 mol/m2) 

2019 98.929 

2020 92.701 

2021 95.216 

2022 101.194 

 

From the values presented in Table 4, percent change in the annual mean NO2 concentrations in the study site, within 

their respective 10 KM buffer zone, was generated. There was a significant decline in the values of NO2 from 2019 to 

2020, quantitatively represented by the -6.30% percent change in the annual mean NO2 concentrations. This is likely 

attributed to the COVID-19 lockdown during the aforementioned time period. Furthermore, there was an increase in the 

NO2 concentrations in the area of Port of Manila, with a 6.28% percent change from 2021 to 2022. This can be attributed 

to the increased economic activity in the country as the strict COVID-19 lockdowns in the country were eased. 

 
Figure 6. Box plots of monthly NO2 concentrations in Port of Manila from 2018 - 2023. 

Shown in Figure 6 is the variability of NO2 concentrations in the Port of Manila from its monthly intervals from July 

2018 to March 2023. Highest variability in pollutant concentration can be observed during June 2022 while lowest 

variability can be found during April 2020. Peak value can be observed during November 2021 while the lowest value, 

indicated as a significant outlier, can be seen during June 2022. 

 

Table 5. Summary table of annual mean SO2 concentrations in the study area 

Year Annual Mean SO2 Concentrations 

within 10KM buffer zone  (10-6 mol/m2) 

2019 0.138 

2020 1.200 

2021 9.085 

2022 8.841 

 

From the values presented in Table 5, percent change in the annual mean SO2 concentrations in the study sites, within 

their respective 10 KM buffer zone, were generated. There was a significant increase in the values of SO2 emissions in 

the study area from 2019 to 2020 likely due to the eruption of nearby Taal Volcano. Quantitatively, this increase is 

represented by the 772.00% percent change in the annual mean SO2 concentrations in the Port of Manila. Furthermore, 
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as the country seeks to spur economic activity, the strict COVID-19 lockdowns in the country were eased starting April 

12, 2021. Thus, the further increase in the SO2 concentrations in the study area. 

 
Figure 7. Box plots of monthly SO2 concentrations in Port of Manila from 2018 - 2023. 

The variability of SO2 concentrations within the Port of Manila in monthly intervals from October 1, 2018 to March 31, 

2023 is shown in Figure 7. Highest variability in pollutant concentration can be seen during months of July and August 

2022 while the lowest variability can be found in November 2022. Peak value can be observed during January 2022 with 

significant outlier, while lowest values can be seen during April 2019. 

 

 

4. CONCLUSIONS 

The spatiotemporal variability of air pollutants NO2 and SO2 in Port of Manila, Philippines was studied through 

Emerging Hotspot Analysis of Sentinel-5P based tropospheric vertical column densities. The high spatio-temporal 

resolution measurements from Sentinel-5P were utilized to monitor the concentrations of trace gases. The findings from 

the Emerging Hotspot Analysis of NO2 and SO2 vertical column densities revealed several patterns and trends within the 

10km vicinity of the study port area in the Philippines. 

Spatial and temporal trends in air pollutant NO2 and SO2  concentrations were analyzed using the Emerging Hotspot 

Analysis tool. The study found a notable relationship between port activities and the occurrence of hotspots, particularly 

intensifying and persistent hotspots. The COVID-19 pandemic had an impact on the tropospheric vertical column 

densities, with a decrease in hotspots observed in 2020. Level of urbanization and the COVID-19 community quarantine 

proved to be the primary influencing factors in NO2 concentrations. The declines in hotspots in these ports during the 

2020 lockdowns are likely the result of reduced fuel combustion sources, such as decreased vehicle emissions and reduced 

output from power plants, which are significant contributors to NO2 levels in urban areas. On the other hand, emerging 

hotspot analysis of SO2 retrievals in Port of Manila revealed that there were no observable patterns. Analysis of annual 

mean concentrations proved to be consistent with the emerging hotspot analysis. Overall, The increase in mean NO2 and 

SO2 concentration values is directly related to the high amounts of intensifying and persistent hotspots in the port areas. 

Future studies related to air quality monitoring in ports using remote sensing techniques can benefit from the following 

recommendations to enhance the analysis of air pollutant retrievals. Other trace gasses such as CO and CH4 as well as 

other pollutants such as Particulate Matter (PM) can be explored to provide valuable insights into their sources and 

impacts. The inclusion of meteorological parameters such as wind speed and direction, rainfall, and land surface 

temperature (LST), which can significantly affect the dispersion and transportation of pollutants especially in port areas, 

can provide a more comprehensive understanding of the air quality dynamics. In addition, it can be beneficial to take into 

account all possible contributing factors, including the presence of neighboring establishments and population density. 

Finally, incorporating ground in situ data can be valuable for validation of remote sensing observations and contributing 

factors of air pollution in ports (i.e. cargo traffic, port and ship activities, volcanic emissions). 
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